Sobolev-type Error Estimates for Interpolation by Radial Basis Functions

نویسنده

  • Holger Wendland
چکیده

We generalize techniques dating back to Duchon 4] for error estimates for interpolation by thin plate splines to basis functions with positive and algebraically decaying Fourier transform. We include L p-estimates for 1 p < 2 that can also be applied to thin plate spline approximation. x1. Introduction Radial basis functions are a well-established tool for multivariate approximation problems. A radial basis interpolant to a continuous function f : IR d ! IR on a set X = fx 1 ; : : : ; x N g is formed by s f (x) = N X j=1 j (x ? x j): Here : IR d ! IR is a xed, positive deenite and symmetric function, and the coeecients j are determined by the interpolation conditions s f (x j) = f(x j), 1 j N. A more general setting adds certain polynomials to s f to form the interpolant and allows to be a more general function. For details we refer the reader to the overview articles 3, 5, 6, 8]. In many cases, the function is radial in the sense (x) = (kxk 2), x 2 IR d. In this paper we are mainly interested in basis functions : IR d ! IR that are in L 1 (IR d) and possess Fourier transforms ^ (!) = (2) ?d=2 Z I R d (x)e ix T ! dx which satisfy c 1 (1 + k!k 2) ?d?2k?1 ^ (!) c 2 (1 + k!k 2) ?d?2k?1 ISBN 1-xxxxx-xxx-x. All rights of reproduction in any form reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree

We consider error estimates for the interpolation by a special class of compactly supported radial basis functions. These functions consist of a univariate polynomial within their support and are of minimal degree depending on space dimension and smoothness. Their associated \native" Hilbert spaces are shown to be norm-equivalent to Sobolev spaces. Thus we can derive approximation orders for fu...

متن کامل

Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space

In this study, we are mainly interested in error estimates of interpolation, using smooth radial basis functions such as multiquadrics. The current theories of radial basis function interpolation provide optimal error bounds when the basis function φ is smooth and the approximand f is in a certain reproducing kernel Hilbert space Fφ. However, since the space Fφ is very small when the function φ...

متن کامل

Radial Basis Function Interpolation in Sobolev Spaces and Its Applications

In this paper we study the method of interpolation by radial basis functions and give some error estimates in Sobolev space H(Ω) (k ≥ 1). With a special kind of radial basis function, we construct a basis in H(Ω) and derive a meshless method for solving elliptic partial differential equations. We also propose a method for computing the global data density. Mathematics subject classification: 41...

متن کامل

Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates

In this paper we present error estimates for kernel interpolation at scattered sites on manifolds. The kernels we consider will be obtained by the restriction of positive definite kernels on Rd, such as radial basis functions, to a smooth, compact embedded submanifold M ⊂ Rd with no boundary. For restricted kernels having finite smoothness, we provide a complete characterization of the native s...

متن کامل

Meshless Collocation: Error Estimates with Application to Dynamical Systems

In this paper, we derive error estimates for generalized interpolation, in particular collocation, in Sobolev spaces. We employ our estimates to collocation problems using radial basis functions and extend and improve previously known results for elliptic problems. Finally, we use meshless collocation to approximate Lyapunov functions for dynamical systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997